33 research outputs found

    Triple Disruptions in The Galactic Centre: Captured and Ejected Binaries, Rejuvenated Stars, and Correlated Orbits

    Full text link
    The disruption of a binary star by a massive black hole (MBH) typically leads to the capture of one component around the MBH and the ejection of its companion at a high velocity, possibly producing a hypervelocity star. The high fraction of observed triples (10\sim10% for F/G/K stars and 50\sim50% for OB stars) give rise to the possibility of the disruption of triples by a MBH. Here we study this scenario, and use direct NN-body integrations to follow the orbits of thousands of triples, during and following their disruption by a MBH (of 4×1064\times10^6 M_\odot, similar to the MBH existing in the Galactic Centre; SgrA^*). We find that triple disruption can lead to several outcomes and we discuss their relative frequency. Beside the ejection/capture of single stars, similar to the binary disruption case, the outcomes of triple disruption include the ejection of hypervelocity binaries; capture of binaries around the MBH; collisions between two or all of the triple components (with low enough velocities that could lead to their merger); and the capture of two or even three stars at close orbits around the MBH. The orbits of single stars captured in a single disruption event are found to be correlated. The eccentricity of the mutual orbits of captured/ejected binaries is typically excited to higher values. Stellar evolution of captured/ejected binaries may later result in their coalescence/strong interaction and the formation of hypervelocity blue stragglers or merger remnants in orbits around SgrA*. Finally, the capture of binaries close to the MBH can replenish and increase the binary frequency near the MBH, which is otherwise very low.Comment: 8 pages, 2 figures, 3 tables, submitted to MNRA

    Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes

    Get PDF
    The general paradigm that emerges from the analysis of the transcriptome of the malaria parasite Plasmodium falciparum is that the expression clusters of genes that code for enzymes engaged in the same cellular function is coordinated. Here the consistency of this perception is examined by analysing specific pathways that metabolically-linked. The pentose phosphate pathway (PPP) is a fundamental element of cell biochemistry since it is the major pathway for the recycling of NADP(+ )to NADPH and for the production of ribose-5-phosphate that is needed for the synthesis of nucleotides. The function of PPP depends on the synthesis of NADP(+ )and thiamine pyrophosphate, a co-enzyme of the PPP enzyme transketolase. In this essay, the transcription of gene coding for enzymes involved in the PPP, thiamine and NAD(P)(+ )syntheses are analysed. The genes coding for two essential enzymes in these pathways, transaldolase and NAD(+ )kinase could not be found in the genome of P. falciparum. It is found that the transcription of the genes of each pathway is not always coordinated and there is usually a gene whose transcription sets the latest time for the full deployment of the pathway's activity. The activity of PPP seems to involve only the oxidative arm of PPP that is geared for maximal NADP(+ )reduction and ribose-5-phosphate production during the early stages of parasite development. The synthesis of thiamine diphosphate is predicted to occur much later than the expression of transketolase. Later in the parasite cycle, the non-oxidative arm of PPP that can use fructose-6-phosphate and glyceraldehyde-3-phosphate supplied by glycolysis, becomes fully deployed allowing to maximize the production of ribose-5-phosphate. These discrepancies require direct biochemical investigations to test the activities of the various enzymes in the developing parasite. Notably, several transcripts of PPP enzyme-coding genes display biphasic pattern of transcription unlike most transcripts that peak only once during the parasite cycle. The physiological meaning of this pattern requires further investigation

    Antioxidant defense in Plasmodium falciparum – data mining of the transcriptome

    Get PDF
    The intraerythrocytic malaria parasite is under constant oxidative stress originating both from endogenous and exogenous processes. The parasite is endowed with a complete network of enzymes and proteins that protect it from those threats, but also uses redox activities to regulate enzyme activities. In the present analysis, the transcription of the genes coding for the antioxidant defense elements are viewed in the time-frame of the intraerythrocytic cycle. Time-dependent transcription data were taken from the transcriptome of the human malaria parasite Plasmodium falciparum. Whereas for several processes the transcription of the many participating genes is coordinated, in the present case there are some outstanding deviations where gene products that utilize glutathione or thioredoxin are transcribed before the genes coding for elements that control the levels of those substrates are transcribed. Such insights may hint to novel, non-classical pathways that necessitate further investigations

    Hot Electron-Based Solid State TiO2|Ag Solar Cells

    Get PDF
    The present work reports a simple and direct sputtering deposition to form solid state TiO2|Ag independent plasmonic solar cells. The independent plasmonic solar cells are based on a Schottky barrier between two materials, TiO2 and Ag. The Ag functions as the absorber generating “hot” electrons, as well as the contact for the solar cell. The Ag sputtering is performed for different durations, to form Ag nanoparticles with a wide size distribution on the surface of rough spray pyrolysis deposited TiO2. Incident photon to current efficiency (IPCE) measurements show photovoltaic activity below the TiO2 bandgap, which is caused by the silver nanoparticles that have a wide plasmonic band, leading to the generation of “hot” electrons. X-ray photoelectron spectroscopy analysis supports the “hot” electron injection mechanism by following the Ag plasmon band and detecting local photovoltages. The measurements show that electrons are formed in the Ag upon illumination and are injected into the TiO2, producing photovoltaic activity. J–V measurements show photocurrents up to 1.18 mA cm−2 and photovoltages up to 430 mV are achieved, with overall efficiencies of 0.2%. This is, to our knowledge, the highest performance reported for such independent plasmonic solar cells

    Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica

    Full text link
    The environment near super massive black holes (SMBHs) in galactic nuclei contain a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits in respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai-cycles). During periapsis approach, at the highest eccentricities during the Kozai-cycles, gravitational wave emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries which do not reside near a SMBH. The close environment of SMBHs could therefore serve as catalyst for the inspiral and coalescence of binaries, and strongly affect their orbital properties. Such compact binaries would be detectable as gravitational wave (GW) sources by the next generation of GW detectors (e.g. advanced- LIGO). About 0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbit that are still very eccentric (e>~0.5). The efficient gravitational wave analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the MBH could evolve through a complex dynamical (non-secular) evolution leading to emission of several GW pulses during only a few yrs (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.Comment: 15 pages, 7 Figures. ApJ accepte

    Cellular Uptake of Chloroquine Is Dependent on Binding to Ferriprotoporphyrin IX and Is Independent of NHE Activity in Plasmodium falciparum

    Get PDF
    Here we provide definitive evidence that chloroquine (CQ) uptake in Plasmodium falciparum is determined by binding to ferriprotoporphyrin IX (FPIX). Specific proteinase inhibitors that block the degradation of hemoglobin and stop the generation of FPIX also inhibit CQ uptake. Food vacuole enzymes can generate cell-free binding, using human hemoglobin as a substrate. This binding accounts for CQ uptake into intact cells and is subject to identical inhibitor specificity. Inhibition of CQ uptake by amiloride derivatives occurs because of inhibition of CQ–FPIX binding rather than inhibition of the Na+/H+ exchanger (NHE). Inhibition of parasite NHE using a sodium-free medium does not inhibit CQ uptake nor does it alter the ability of amilorides to inhibit uptake. CQ resistance is characterized by a reduced affinity of CQ–FPIX binding that is reversible by verapamil. Diverse compounds that are known to disrupt lysosomal pH can mimic the verapamil effect. These effects are seen in sodium-free medium and are not due to stimulation of the NHE. We propose that these compounds increase CQ accumulation and overcome CQ resistance by increasing the pH of lysosomes and endosomes, thereby causing an increased affinity of binding of CQ to FPIX

    Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts

    Get PDF
    In the search for antimalarials from ethnobotanical origin, plant extracts are chemically fractionated and biological tests guide the isolation of pure active compounds. To establish the responsibility of isolated active compound(s) to the whole antiplasmodial activity of a crude extract, the literature in this field was scanned and results were analysed quantitatively to find the contribution of the pure compound to the activity of the whole extract. It was found that, generally, the activity of isolated molecules could not account on their own for the activity of the crude extract. It is suggested that future research should take into account the “drugs beside the drug”, looking for those products (otherwise discarded along the fractionation process) able to boost the activity of isolated active compounds

    A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Get PDF
    Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants) as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries
    corecore